首页> 外文OA文献 >Development and Validation of a Spike Detection and Classification Algorithm Aimed at Implementation on Hardware Devices
【2h】

Development and Validation of a Spike Detection and Classification Algorithm Aimed at Implementation on Hardware Devices

机译:旨在在硬件设备上实现的峰值检测和分类算法的开发和验证

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Neurons cultured in vitro on MicroElectrode Array (MEA) devices connect to each other, forming a network. To study electrophysiological activity and long term plasticity effects, long period recording and spike sorter methods are needed. Therefore, on-line and real time analysis, optimization of memory use and data transmission rate improvement become necessary. We developed an algorithm for amplitude-threshold spikes detection, whose performances were verified with (a) statistical analysis on both simulated and real signal and (b) Big O Notation. Moreover, we developed a PCA-hierarchical classifier, evaluated on simulated and real signal. Finally we proposed a spike detection hardware design on FPGA, whose feasibility was verified in terms of CLBs number, memory occupation and temporal requirements; once realized, it will be able to execute on-line detection and real time waveform analysis, reducing data storage problems.
机译:在MicroElectrode Array(MEA)设备上体外培养的神经元相互连接,形成网络。为了研究电生理活性和长期可塑性影响,需要长期记录和穗分选法。因此,在线和实时分析,存储器使用的优化和数据传输速率的提高变得必要。我们开发了一种用于振幅阈值尖峰检测的算法,该算法的性能已通过(a)对模拟信号和实际信号的统计分析以及(b)Big O表示法进行了验证。此外,我们开发了PCA分层分类器,对模拟信号和真实信号进行了评估。最后,我们提出了一种基于FPGA的尖峰检测硬件设计,并在CLB数量,内存占用和时间要求方面验证了其可行性。一旦实现,它将能够执行在线检测和实时波形分析,从而减少数据存储问题。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号